Quantifying Line-of-Sight Effects for Spectroscopic Measurements of Alfvén Waves and Turbulence in the Solar Corona

BY CHRIS GILBERT

MOTIVATION: THE CORONA IS UNEXPLAINABLY HOT

- What is the precise mechanism by which the corona is heated?
- Related: How is the solar wind accelerated?
- Two popular ideas:
 - DC: Reconnection (Nanoflares)
 - AC: Alfvén Waves

ALFVÉN WAVES IN THE CORONA

Alfvén waves travel along field lines.

BRAIDS simulation of propagating Alfvén waves

Photosphere

TR

Alfvén waves in open field lines above the Sun's pole

HOW DO SPECTRA TELL US ABOUT ALFVÉN WAVES?

When we make measurements of spectral lines, we are sampling more than one structure in the corona. Each structure will have a Doppler shift due to Alfvén waves.

We measure this with spectrometers like COMP or EIS as a broadening of the spectral line.

The goal of this research is to simulate these observations using forward modeling to better understand the distribution of Alfvén waves in the corona.

LETS STUDY SOME CORONAL HOLES!

- There are two types of solar wind, fast and slow
 - Slow wind occurs near the equator, and has complex structures, like helmet streamers
 - Fast wind comes from the holes, and is nice and radial

2013/07/18 13:06

SIMULATION ENVIRONMENT

- This object contains the properties that define the environment in which spectral lines will be simulated
 - Magnetic Field Map
 - $\rho \propto \left(\frac{B}{B_{thresh}}\right)^{0.5}$
 - Background Plasma Properties: f(r)
 - Density
 - Wind Speed
 - RMS Alfvén Speed
 - Alfvén Profiles
 - Temperature
 - Fundamental Constants
 - Kb, C, etc.

Magnetic Field Map of the Solar North Pole

The magnetic field map causes density enhancements that look like the real solar coronal holes!

PROCESSING THE BMAP

We want many different sources of waves (supergranuale scale)

The streams are indexed to group coherent regions into a single wave source.

The streams are indexed to group coherent regions into a single wave source.

The sizes of the coherent regions are tuned to match supergranule cell sizes on the Sun.

ALFVÉN WAVES AND TURBULENCE

Wave travel time

Cross-section of a single streamer

Alfvén wave profiles are generated by the BRAIDS code and imported to my simulation

Plane with Normal = (0.00, 1.00, 0.00),

Offset = (0.00, 3.00, -3.00)

LEVEL 0: SIMPOINT

Every point in the simulation is an object, which has the all of these properties.

C:\Windows\system32\cmd.exe

CoronaSim! Written by Chris Gilbert

Simpoint Properties : 1310737.60627 alfAngle 4.57865702357 alfT1 3457.94710927 3659.89747228 alfT2 13811943.0702 alfil1 26507005.3113 1fU2 [0.1, 0.1, 1.5] cPos [-5663120.2818389349, -5663120.2818389349, 9327469.3867232278] deltaLam 0.0131763193129 densfac - 1 : <coronasim.environment object at 0x000000006B75208> 2.46597992741 findT : True 2.47998936927 footB [0.042071133845158301, 0.042071133845158301, 1.0082460212636426] foot_cPos foot_pPos : [1.01, 0.058942607346144732, 0.78539816339744828] grid : <gridgen.plane object at 0x000000006388390> intensity : 2.6274647402e-13 lam : 200 200 lamØ -0.0707134596973 lamLos 1.32823263089e-11 lamPhi -0.70710678][0.70710678 0. nGrad pPos : [1.5066519173319364, 0.094003033807577033, 0.78539816339744828] [7745042.880189077, -17222896.031280585, 24428732.145663504] υU αt 4.44765790341e-18 rho 1.50665191733 streamIndex : 916 162.737715173 136.991254914 twave fit twave rat 1.18794236374 uPhi 24428732.1457 : -17222896.0313 uTheta 7745042.88019 -5663120.28184ux -5663120.28184ԱՉ 9327469.38672 uz vAlf 288802488.557 -10599947.6086 o LOS 296547531.438 vPh : 9609079.52005 vRms

LEVEL 1: SIMULATION OF A SINGLE SIGHTLINE

Plasma properties are simulated along a line-of-sight. This can then be used to generate a spectral line.

ADAPTIVE MESH!

The program adapts the step size to investigate regions of higher density. This drastically reduces the computation time required.

INTENSITY AS FUNCTION OF WAVELENGTH

Emission Intensity $I(\lambda) = \rho^2 * \Phi(\lambda)$

Line Profile Function

 $\Phi(\lambda)$

Sightline at Position = (1.41, 0.01, 1.41),

Thermal Width $|2k_bT|$ $\Delta \lambda = \frac{\lambda_0}{c}$ m_i Doppler Shift v_{LOS} $\lambda_{LOS} =$

LEVEL 2: MULTISIM

Generate many sightlines at a given impact parameter, in order to get statistics on spectral line properties.

Each line is simulated at a random time.

A typical run generates about 10,000 spectral lines, using 6 different magnetic field maps.

Lines are analyzed for

- Total Intensity
- Mean Doppler Shift
- Line Width
- Skewness
- Kurtosis

LEVEL 3: LINE STATISTICS AS A FUNCTION OF IMPACT PARAMETER

LEVEL 3: LINE STATISTICS AS A FUNCTION OF IMPACT PARAMETER

TIME INTEGRATION

LOOKING FORWARD

- The simulation works, now we just need to make it match the observations.
 - Vary the model parameters and continue refining the physics until it matches observations from instruments like EIS, COMP
 - Learn to invert the observations to find V_{RMS}
- Parameter study of cell size
 - Test the hypothesis that the residual redshift observed decreases as $\frac{1}{\sqrt{N}}$

QUESTIONS?

Contact: Chris.Gilbert@Colorado.edu www.chrisgilbert.space